α	3 Y	
~ 1	No.	٠
$\omega_{\mathbf{I}}$.	TIO.	٠

	 	 		_		
Register						
Number			-			

2019 GEOLOGY (PG Degree Std.)

Time Allowed: 3 Hours

[Maximum Marks: 300

GEPG/19

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. The applicant will be supplied with Question Booklet 15 minutes before commencement of the examination.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer, the candidates are requested to check whether all the questions are there in series and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed, it shall be reported to the Invigilator within first 10 minutes and get it replaced with a complete Question Booklet. If any defect is noticed in the Question Booklet after the commencement of examination, it will not be replaced.
- 3. Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. An answer sheet will be supplied to you, separately by the Room Invigilator to mark the answers.
- 6. You will also encode your Question Booklet Number with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per Commission's notification.
- 7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 8. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Blue or Black ink Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

 $A \bullet C D$

- 9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the time of examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 10. Do not make any marking in the question booklet except in the sheet before the last page of the question booklet, which can be used for rough work. This should be strictly adhered.
- 11. Applicants have to write and shade the total number of answer fields left blank on the boxes provided at side 2 of OMR Answer Sheet. An extra time of 5 minutes will be given to specify the number of answer fields left blank.
- 12. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.

10

	. (1)	Hawaiian type	(B)	Pelean type	
	(C)	Vesuvian type	(D)	Strambilian type	
2.	A vo	lcano which has not erupted for a l	ong time is	s called as	
	(A)	Active volcano	(8)	Dormant volcano	
	(C)	Extinct volcano	(D)	Dead volcano	
3.	Whe	re two continental plates collide wi	th each ot	her, associated with	
		Mountain building			
÷	(B)	Island ridges			
	(C)	Mid oceanic ridges			
	(D)	Oceanic trenches			
4.	Tren	ches are the site of			
	(A)	Converging currents			
	(D)	Diverging currents			
	(C)	No currents are present at trencl	nes		
	(D)	Massive folding			
5.	The t	fastest spreading of the sea floor is	exhibited	by	
	· (A)	South Atlantic Ridge			
	(B)	North Atlantic Ridge	•		
	(C)	Central Indian Ridge	•		
		East Pacific Rise			
6.	Drift	ing of continents started during			
		Carboniferous	(B)	Devonian	
	(C)	Cambrian	(D)	Permian	

The sclent volcanic eruption of lava without any explosive activity is

	(B)	Sedimentation-Clock method	•			
	(C)	Salinity-Clock method		e e e e e e e e e e e e e e e e e e e		
	(D)	Rate of cooling of the earth				
8.	The l	ower and upper gondwana are charac	terized respective	ely by		
	(A)	Glossopteris and Gangamopteris				
		Glossopteris and Ptilophyllum				
	(C)	Ptilophyllum and Glossopteris				
	(D)	Ptilophyllum and Nilgonia		•		
•	(D)	T thophynam and Tungoma				
	m: 1	3.001 1 1	T			
9.	Tirof	nan limestone and Tirohan breccia are	equivalent to			
	(A)	Upper Vindhyan			+ •*	
		Lower Vindhyan	•	*		
	(C)	Upper Cuddapah				
	(D)	Lower Cuddapah			•	
10.	The	pyrite deposits are found in				
	(A)	Jhiri shales				
	(B)	Panna shales				
	(2)	Bijaigarh shales				
	(D)	Ganugarh shales			• • •	
				1		
11.	Tho	thickness of Vindhyan system of rocks	S 970			
11.						v
	(A)	4000 m	4270 m			
	(C)	4500 m	(D) 4750 m			
GE	PG/19		4	•	•	←

To determine the age of the earth, the fine sedimentary deposits of glacial origin are used in

7.

Varve-Clock method

12.	Ariy	alur stage is mainly composed of				
	(A)	Arenaceous and Calcareous rocks				
	(B)	Argillaceous and Calcareous rocks				
	VE	Arenaceous and Argillaceous rocks	3			
	JB1	Calcareous rocks only				
13.	The gasti	Infra-trappean beds are having mar ropods which seems to be identical w	ine fossil rith	s like nautilus, se	veral lamellib	ranchs and
	(A)	Fossils of the Uttatur Stage of Tric	chy Creta	aceous		
	(B)	Fossils of the Trichinopoly stage of	f Trichy (Cretaceous		
	100	Fossils of the Ariyalur stage of Tri	chy Creta	aceous		•
	(D)	Fossils of the Dalmiapuram forma		•		
						• *
14.	Colu	mnon jointing in the Dessey turns		•		
14.	(A)	mnar jointing in the Deccan traps at Gujarat				
	(C)	Bihar	(B)	Girnar hills Bombay	, , , , , , , , , , , , , , , , , , ,	
	. (0)	Billar		ьотрау		•
						e e e
15.	The	Deccan traps are spread over the vas	st areas o	of		
	(A)	Western India				
	(B)	Central India			.*	
	(C)	Southern India				•
	(D)	Western, Central and Southern In	dia			
16.	Mutl	h Quartzites are seen in which of the	followin	g systems of palae	ozoic group?	
	(A)	Ordovician	. (B)	Silurian	ozoto group.	
	100	Devonian	(D)	Permian		
	,		` /			
17.	C	nonthruis liverstone le l				
11.		ngothyris limestone beds are charact			_	
•	(A)	Lower Ordovician	(B)	Upper Ordovicia		
		Lower Carboniferous	(D)	Upper Carbonife	rous	
٠						
18.	Chin	ji formation belongs to which of the	following	sub-groups?		
	(1)	Lower Siwaliks	(B)	Middle Siwaliks		
	(C)	Upper Siwaliks	(D)	Lower Gondwan	a ,	
4						

19.	Which	of the following is the uppermost series of Cuddapah system?
	(A)	Papaghani
	(3)	Kristna
	(C)	Cheyair
	(D)	Nallamalai
20.	Irlak	onda comprises which of the following rock types?
	(A)	Marbles
	(B)	Limestones
•	(C)	Shales
	D	Quartzites
•		
21.	The (Cuddapah system is a group of rocks deposited after which of the following?
	4	Eparchean unconformity
	(B)	Vindhyan system
	(C)	Gondwana formations
	(D)	Deccan traps
	(- /	
	DI	D. H. Lill of Francis Dhammar Croton is assumed to have an age of
22.	Dha	rwar Batholith of Eastern Dharwar Craton is assumed to have an age of
		2500 – 2700 Ma
	(B)	> 3000 Ma
	(C)	> 2800 Ma
	(D)	2800 - 3000 Ma
23.		exploration stratigraphic correlation from area to area and well to well can be done on basis of
	(A)	Stratigraphic horizons
	(3)	Micropalaeontological marker horizons
	(C)	Sedimentary interpretations
	(D)	Depth of the stratigraphic column
	<u> </u>	en profesionale de la Maria de la companya de la c La companya de la co
CE	'DC/10	6

		Didymograptus	_	Lower and Mi	iddle or	dovician
	(B)	Goniograptus	_	Middle siluria	ın	
	(C)	Loganograptus	. <u> </u>	Lower siluria	n	
	(D)	Staurograptus	—	Silurian		
			•			
25.	In Gi	raptolites, largest	of th	necae is called		
	V.	Autotheca			(B)	Stolotheca
•	(C)	Bitheca		•	(D)	Protheca
						•
26.	The t	tube of colony in g	rapt	olites is known	as	
	(1)	theca			(B)	suture
	(C)·	stipe			(D)	nema
27.	The i	fossils resemblanc	e of	pencil marks ar	e calle	l
	(11)	Graptolites			(B)	Trilobites
	(C)	Echinoderma			(D)	Porifera
28.	Whic	ch of the following	is n	ot matched corr	ectly?	
	(A)	Olenellus –	L	ower Cambrian		
	(B)	Paradoxides -	M	liddle Cambriar	ı	
	(0)	Calymene -	U	pper Cambrian		•
	(D)	Trinucleus -	Ó	rdovician		
29.	The	most ancient kind	of e	yes in Trilobite	s are kr	nown as
		Holochroal eyes				
	(B)	Schizochroal ey	es			
	(C)	Stalked eyes		•	•	
	(D)	Abathochroal ey	yes			
					·	
-						

Which of the following is correct?

30.	Which	n of the following gro	up shows evo	lution in n	ature of sut	ure line in	Ammon	oidea?
	(II)	Goniatitic, Ceratitic	c, Ammonitic					
	(B)	Ceratitic, Goniatitic	c, Ammonitic					
	(C)	Ammonitic, Goniati	itic, Ceratitic					
	(D)	Goniatitic, Ammoni	itic, Ceratitic		**************************************			٠
•								
31.		structures ma	ay form poten	tial oil frap	os (or) aqui	fers.		
	(A)	Inlier		(B)	Off lap			
	(C)	Outlier			Over lap			
					•			
32.	The J	Turassic formation of	ʻIndia was tvi	oically dep	osited at	• •		
- O -	(A)	Maharashtra		paramag ipip				
	(2.1)	Gujarat						
	(C)	Madhya Pradesh						
		Andhra Pradesh		•	*			٠.,
	(D)	Anunra Frauesn					*	
	•			•				
33.		· ·	to axial plane	and perper	ndicular to	extension jo	oints.	
. *		Release Joint						
	(B)	Conjugate Joint						
	(C)	Extension Joint						
	(D)	Master Joint		· ·				
	: :			•			,	
34.	Pres	ence of a large block	horse of dislo	cated wall	rock in the	fault fissur	e indica	tes
	(A)	Fault crevice						
	(B)	Reverse fault					i	-
	4	Normal fault				•		
	(D)	Strike slip fault						
								•
GE	PG/19			8	•			

- (A) Concentric folding
- (C) Parallel folding

Similar folding

41.	Whic	h of the given crystal classes are represented by "Only centre of symmetry"
	(1)	Normal class of Triclinic system
	(B)	Normal class of Monoclinic system
	(C)	Normal class of Isometric system
	(D)	Normal class of Tetragonal system
42.	The	axial ratio of a: b: $c = 0.6585:1:0.5554$ is applicable to which of the given minera
12.	speci	
	(1)	Orthoclase (B) Barite
	(C)	Chalcopyrite (D) Galena
43.	Phan	acite is the type mineral for which of the following crystal classes?
40.	Then	Tri-rhombohedral class of Hexagonal system
,	(B)	Rhombohedral class of Hexagonal system
	(C)	Rhombohedral Hemimorphic class of Hexagonal system
	(D)	Trigonal class of Hexagonal system
	. (12)	Trigonal class of floragonal system
44.		nelite is the type mineral for which of the following crystal classes?
	(A)	Hemimorphic class of hexagonal system
	(B)	Trapezohedral class of hexagonal system
	(C)	Tripyramidal class of hexagonal system
		Pyramidal-Hemimorphic class of Hexagonal system
45 .	Wulf	fenite is the type mineral for which of the following crystal classes?
	(A)	Tripyramidal class of tetragonal system
	(B)	Trapezohedral class of tetragonal system
	(0)	Pyramidal-Hemimorphic class of tetragonal system
	(D)	Hemimorphic class of tetragonal system
46.	Tetr	ahedrite is the type mineral for which of the following crystal classes?
ŦU.	(A)	Normal class of isometric system
	(B)	Normal class of Tetragonal system
		Tetrahedral class of isometric system
	(D)	Tetartohedral class of isometric system
	(D)	revarionical at class of isometric system

10

GEPG/19

1 7.	Schil	ler structure is more common	among which o	f the following pyr	oxenes?	
	(A)	Enstatite	D	Hypersthene		
	(C)	Diopside	(D)	Angite		
					•	
48.	Spod	umene is a lithium bearing py	roxene group n	nineral that crysta	ıllizes in	• •
	(A)	Orthorhombic system		Monoclinic syste	m	
	(C)	Triclinic system	(D)	Tetragonal syste	m	
49 .	Diop	side is a pyroxene group mine	ral that crystal	lizes in		
	(A)	Orthorhombic system		Monoclinic syste	m	
	(C)	Triclinic system	(D)	Tetragonal syste	m	
50.	Whic	ch of the following Feldspatho	idal mineral sh	nows an octahedra	l crystal forn	n among the
,	give	· · · · · · · · · · · · · · · · · · ·				
	(A)	Nepheline	(B)	Melilite		
	4	Hauyne	(D)	Cancrinite		
51.		ch of the following minerals	show Isotropis	m under crossed	polars irrespo	ective of the
		ntation of the thin section?		Sodalite	•	
	(A)	Melilite	(D)			
÷	(C)	Cancrinite	(D)	Nepheline		
			· · · · · · · · · · · · · · · · · · ·	•		
52.	Leu	cite crystallizes in which of the	e following crys	tal systems?		
	(A)	Tetragonal				
	(B)	Hexagonal	* ·	•		
	(C)	Isometric		•		
		Pseudoisometric				
						,
5 3.	The	Ternary diagram of the Felds	pars is with wl	nich all end memb	ers	
	(A)	Anorthite – Albite - Oligocl				
	(B)	Oligoclase – Orthoclase - A	lbite			* * *
	401	Orthoclase – Albite - Anort	hite			
	(D)	Albite – Orthoclase – Byto	wnite			

54 .	C.1.1	Y.W. classification is based on
	(A)	Minerals group
	(3)	Chemical composition
	(C)	Physical properties
	(D)	Color index
55.	Δmo	ng the following grown which are is seen as well as I do
<i>5</i> 0.	(A)	ng the following group which one is common wall rock alteration product. Syenite
	(B)	Nepheline
	(B)	Carbonatite
	(D)	
	(D)	Anorthosite
56.	The	Anorthosites are emplaced during the period of
	(A)	Silurian
•	(3)	Pre-Cambrian Pre-Cambrian
*	(C)	Cambrian
	(D)	Ordovician
57.	Tho	Olivine-free basalt are called as
01.	(A)	
	(C)	Tourmaline Tholeitic
58.	Perio	lotites have ———— percentage of silica and the color index is ————.
	(A)	<45% silica and <30 color index
	(0)	<45% silica and above 70 color index
	(C)	>66% of silica and 70 color index
	(D)	52-66% of silica and <30 color index
59.	Who	no in the annual lead to the lead of the l
59.		re is the great basalt plateau occur?
	(A)	Madgascar
	(B)	Western Isles
		Greenland
	(D)	Scotland

- 60. The graphic texture is a
 - Intergrowth of two minerals frequently
 - (B) Eutectic point
 - (C) Crystallisation occur in slowly
 - (D) Rapid cooling
- 61. Obsidian is a

- (B) Olivine and pyroxene composition
- (C) Fire matrix with angular fragments
- (D) Sedimentary material with volcanic ash
- 62. The distinction between basalt and andesite is mainly based on
 - Sio₂ content
 - (B) Matic minerals
 - (C) Felds pathoid
 - (D) Peridotite
- 63. The alteration takes place around the margins of crystals with the presence and retention of abundant water in soda rich basic magma this process called as
 - (A) Albitisation
 - (B) Migmatite Process
 - Analcitisation
 - (D) Lit Par Lit gneiss process
- 64. The process by which superheated steam aided by a little fluorine and boron process is called
 - (A) Charnockitisaiton
 - (B) Scapolitisation
 - (C) Kaolinisation
 - (D) Greisening

	(B)	Silliceous sinter					4
	(C)	Flint			•		
		Kankar					
	•						
66.	Whic	h one is typical example o	of continental	facies			
50.	(A)	Lime stone	of Continental	lacies	•		
	(A) (B)	Rock salt					
	(C)	Gypsum					
		Conglomerates					
	a.						
67.	Grai	n size between 2 & 1/16m	m clastic sedi:	ment :	is		
	(A)	Gravels		(B)	Silts		
	C	Sand		(D)	Clay		
							•
68.	Gras	vitational settling of mixed	l cadimants is				
00.	Grav	Graded bedding	a seaments is	,			
	(B)	Lamination			, n		
	` '		**************************************				
Y	(C)	Cross bedding					
	(D)	Current bedding					
69.	Cha	nges occur at the water -	sediment inte	rface	are called a	as	
	(A)	Compaction					
	(B)	Lithification					
	(C)	Diagenetic Processes					
		Halmyrolysis					
70.	The	minerals that form natu	ral solid solu	tions	in each otl	her and at detern	nined the lower
• 0.		perature unmix to yield in				iioz aira av acvori	
	(A)	Dissociation					
	(B)	Recrystallization					
	(0)	Exsolution					
	(D)	Liquid inclusion					•
GEI	PG/19		1	4			+
	·						

Which one is Non clastic chemically formed calcareous rock.

65.

(A)

Sand stone

- 71. Graphite generally occurs in
 - (A) Igneous rocks Granite and pegmatites
 - Metamorphic rocks Gneisses and Schists
 - (C) Volcanic rocks Syanites and Andesites
 - (D) Sedimentary rocks Sandstone and lime stone
- 72. Good homes of bauxite deposits are called
 - (A) The low altitude of 100 to 200 mts regarded
 - The high plateau of our peninsula. The plateau at an altitude of 900 to 1000 mts are regarded
 - (C) Lenses under some soil cover
 - (D) Lets unconsolidated low level surface layers
- 73. Copper ores are divided into four large groups find out the correct sequence
 - (A) Sulphide Carbonate Oxides Nitrate
 - (B) Oxidised Nitrate Sulphide Sulphate
 - Native Sulphide Oxidised Complex
 - (D) Complex Sulphide Sulphate Oxidised
- 74. Lower limit of a good commercial bauxite is
 - (A) Presence of about 30% of Al_2O_3
 - (B) Presence of about 35% of Fe_2O_3
 - Presence of about 50% of ${\rm Al}_2{\rm O}_3$
 - (D) Presence of about 40% of FeO
- 75. The Indian graphites show variable fixed carbon content that may range from
 - (A) 20 40%

(B) 10 - 30%

- (0) 4
- 40 80%

- (D) 40 50%
- 76. Which of the following is correctly paired?
 - (A) Singhbhum copper belt Karnataka
 - Khetri copper belt Rajasthan
 - (C) Zawar copper belt Rajasthan
 - (D) None of the above

1.	Exsolution are called as
	(A) this change is somewhat similar to inversion
	(B) liquid inclusions in cavities of crystals
	(C) they are little affected by pressure change
	minerals that form natural solid solution in each other mineral intergrowth – indicating a temperature of formation
8.	The age of Panjal trap is
	Permo carboniferous (B) Permian .
	(C) Silurian (D) Cambrian
79.	Arrange the following items according to the chronological order
	1. Stock works
	2. Ladder veins
	3. Fissure veins
	4. Gash veins
2	(A) 2, 1, 4, 3 (B) 4, 2, 3, 1 (C) 1, 3, 4, 2 (3) 3, 2, 4, 1
30.	Find the incorrect statement with respect to metasomatic replacement deposits which are characterised by
	I. Absence of crustification
	II. Presence of remnants of the country rock
	III. Presence of pseudomorphs of replacing minerals
	IV. Remobilisation by meteoric circulating water
	(A) I and II (B) III and IV (C) I, II and III (D) IV only
	(c) 2, 12 and 11
	itan kanan dari dari dari dari dari dari dari dari
31.	Infiltration gallery is called
	(A) laterals spaced uniformly at 60°
	a horizontal perforated or porous pipe which open joints
•.	(C) a trench across the aquifer well flow
	(D) properly developer usually by compressed air
ວດ	A highly potential a wife was a sure
32 .	A highly potential aquifer occurs in
	(A) Nagapattinam low land (C) Neyveli upland (D) Madamid lad
	(C) Ramnad high (D) Madurai block

83.	Kesis	stivity for gravelly sands with fresh water in rock formations of Karnataka is
	(A)	$10~\Omega\mathrm{m}$
	(B)	1000 Ωm
	The same of the sa	100 Ωm
	(D)	$10^4~\Omega\mathrm{m}$
84.	Ill e	ffect of ———————————————————————————————————
	wate	
	(1)	Flurosis (skeletal)
	(B)	Cardio vascular disease
	(C)	Methemoglobinemia
	(D)	Hepatitis
85.		ne pressure along equipotential line are constant as the flow lines are sloping upward, lepth to interface by Ghyben-Herzber relation is ———————————————————————————————————
	(A)	(B) >
		(D) ≥
86.	Dian	nond drilling
	(A)	With compressed air instead of mud
	(B)	Method for drilling large dia hole
	100	Drilling method to investigate sub surface conditions
	(D)	Method for drilling unconsolidated strata
87.	Hydi	raulic conductivity is expressed in
	(A)	Metre
		Metre / sec.
	(C)	Metre ² / sec.
	(D)	Volume % of pore space
	\-	

(A) Water only Air only (C) Both water and air (D) Neither water nor air Sep. Consider the statements: I. Focus is the point at which an earthquake is originated. II. Isoseismal lines are connectivity the points of equal magnitudes of earth quakes. (A) Both I and II are correct (C) I is incorrect II is incorrect (C) I is incorrect II is correct (D) Both I and II are Incorrect (D) Both I and II are Incorrect (D) Both I and II are Incorrect (E) Soil creep (D) Soil fall Crude petroleum is dark and sticky substance which was known as ———————————————————————————————————	88.	In th	e zone of aeration the pores are filled u	p with	1 ,			
(C) Both water and air (D) Neither water nor air 39. Consider the statements: I. Focus is the point at which an earthquake is originated. II. Isoseismal lines are connectivity the points of equal magnitudes of earth quakes. (A) Both I and II are correct (C) I is incorrect II is incorrect (C) I is incorrect II is correct (D) Both I and II are Incorrect 30. The top soil of any land moves downward even on gentlest slope is known as (A) Mud flow (B) Rock slide (C) Soil creep (D) Soil fall 31. Crude petroleum is dark and sticky substance which was known as in old ays. (A) Oil (B) Liquid Gold (C) Pitch (D) Black Gold 32. Which of the following country is largest producer of hard coal? (A) Australia (C) India (D) USA		(A)	Water only	•				
(D) Neither water nor air (Consider the statements: I. Focus is the point at which an earthquake is originated. II. Isoseismal lines are connectivity the points of equal magnitudes of earth quakes. (A) Both I and II are correct (C) I is incorrect II is incorrect (C) I is incorrect II is correct (D) Both I and II are Incorrect (D) Both I and II are Incorrect (E) Rock slide (E) Soil creep (D) Soil fall (E) Soil creep (D) Soil fall (E) Soil creep (D) Black Gold (E) Pitch (D) Black Gold (E) India (E) India (D) USA		0	Air only		. •			
39. Consider the statements: I. Focus is the point at which an earthquake is originated. II. Isoseismal lines are connectivity the points of equal magnitudes of earth quakes. (A) Both I and II are correct (B) I is correct II is incorrect (C) I is incorrect II is correct (D) Both I and II are Incorrect (D) Both I and II are Incorrect (D) Both I and II are Incorrect (E) I is incorrect II is correct (D) Both I and II are Incorrect (E) I is incorrect II is correct (D) Both I and II are Incorrect (E) Rock slide (E) Soil creep (D) Soil fall (E) Crude petroleum is dark and sticky substance which was known as — in old days. (A) Oil (B) Liquid Gold (C) Pitch (D) Black Gold (C) India (C) India (D) USA Operations produces large scale dust and noise. (A) Vehicle traffic (B) Machinery (C) Blasting		(C)	Both water and air					
I. Focus is the point at which an earthquake is originated. II. Isoseismal lines are connectivity the points of equal magnitudes of earth quakes. (A) Both I and II are correct I is correct II is incorrect (C) I is incorrect II is correct (D) Both I and II are Incorrect (D) Both I and II are Incorrect (E) Both I and II are Incorrect (D) Both I and II are Incorrect (E) Both I and II are correct (D) Both I and II are Incorrect (D) Both I and II are		(D)	Neither water nor air					
I. Focus is the point at which an earthquake is originated. II. Isoseismal lines are connectivity the points of equal magnitudes of earth quakes. (A) Both I and II are correct I is correct II is incorrect (C) I is incorrect II is correct (D) Both I and II are Incorrect (D) Both I and II are Incorrect (E) Both I and II are Incorrect (D) Both I and II are Incorrect (E) Both I and II are correct (D) Both I and II are Incorrect (D) Both I and II are							* * * * * * * * * * * * * * * * * * * *	
II. Isoseismal lines are connectivity the points of equal magnitudes of earth quakes. (A) Both I and II are correct I is correct II is incorrect (C) I is incorrect II is correct (D) Both I and II are Incorrect (D) Both I and II are Incorrect (E) The top soil of any land moves downward even on gentlest slope is known as (A) Mud flow (B) Rock slide (C) Soil creep (D) Soil fall (D) Soil fall (E) Crude petroleum is dark and sticky substance which was known as in old ays. (A) Oil (B) Liquid Gold (C) Pitch (D) Black Gold (E) Pitch (D) USA (E) India (C) India (D) USA	39 .	Cons	ider the statements :					
I is correct II is incorrect (C) I is incorrect II is correct (D) Both I and II are Incorrect (D) Both I and II are Incorrect (E) Both I and II are Incorrect (D) Both I and II are Incorrect (E) Both I and II are Incorrect (D) Soil fall (D) Black Gold (D) Black Gold (D) Black Gold (E) China (C) India (D) USA (D) USA (E) Both I and II are Incorrect (D) USA					=	udes of eartl	ı quakes.	
(C) I is incorrect II is correct (D) Both I and II are Incorrect 70. The top soil of any land moves downward even on gentlest slope is known as (A) Mud flow (B) Rock slide (C) Soil creep (D) Soil fall 71. Crude petroleum is dark and sticky substance which was known as — in oldays. (A) Oil (B) Liquid Gold (C) Pitch (D) Black Gold 72. Which of the following country is largest producer of hard coal? (A) Australia (C) India (D) USA 73. — operations produces large scale dust and noise. (A) Vehicle traffic (B) Machinery (C) Blasting		(A)	Both I and II are correct					
(D) Both I and II are Incorrect The top soil of any land moves downward even on gentlest slope is known as (A) Mud flow (B) Rock slide (C) Soil creep (D) Soil fall Crude petroleum is dark and sticky substance which was known as — in oldays. (A) Oil (B) Liquid Gold (C) Pitch (D) Black Gold Which of the following country is largest producer of hard coal? (A) Australia (C) India (D) USA Operations produces large scale dust and noise. (A) Vehicle traffic (B) Machinery (C) Blasting		1	I is correct II is incorrect					
70. The top soil of any land moves downward even on gentlest slope is known as (A) Mud flow (B) Rock slide (C) Soil creep (D) Soil fall O1. Crude petroleum is dark and sticky substance which was known as ———————————————————————————————————		(C)	I is incorrect II is correct					
(A) Mud flow (B) Rock slide (C) Soil creep (D) Soil fall O1. Crude petroleum is dark and sticky substance which was known as in oldays. (A) Oil (B) Liquid Gold (C) Pitch (D) Black Gold O2. Which of the following country is largest producer of hard coal? (A) Australia (C) India (D) USA Operations produces large scale dust and noise. (A) Vehicle traffic (B) Machinery (C) Blasting		(D)	Both I and II are Incorrect					
(A) Mud flow (B) Rock slide (C) Soil creep (D) Soil fall O1. Crude petroleum is dark and sticky substance which was known as in oldays. (A) Oil (B) Liquid Gold (C) Pitch (D) Black Gold O2. Which of the following country is largest producer of hard coal? (A) Australia (C) India (D) USA Operations produces large scale dust and noise. (A) Vehicle traffic (B) Machinery (C) Blasting				· · · · · · · · · · · · · · · · · · ·				
(A) Mud flow (B) Rock slide (C) Soil creep (D) Soil fall O1. Crude petroleum is dark and sticky substance which was known as in oldays. (A) Oil (B) Liquid Gold (C) Pitch (D) Black Gold O2. Which of the following country is largest producer of hard coal? (A) Australia (C) India (D) USA Operations produces large scale dust and noise. (A) Vehicle traffic (B) Machinery (C) Blasting	90.	The t	top soil of any land moves downward e	ven on	gentlest slope i	s known as		
O1. Crude petroleum is dark and sticky substance which was known as ———————————————————————————————————								
O1. Crude petroleum is dark and sticky substance which was known as ———————————————————————————————————		4	Soil creep	(D)	Soil fall			
days. (A) Oil (B) Liquid Gold (D) Black Gold 92. Which of the following country is largest producer of hard coal? (A) Australia (C) India (D) USA 93. —— operations produces large scale dust and noise. (A) Vehicle traffic (B) Machinery (C) Blasting								
(A) Oil (B) Liquid Gold (D) Black Gold 92. Which of the following country is largest producer of hard coal? (A) Australia (B) China (C) India (C) India (D) USA 93. ————————————————————————————————————	91.			nce w	hich was know	n as ———	in	olden
Pitch (D) Black Gold Which of the following country is largest producer of hard coal? (A) Australia (D) USA Government of the following country is largest producer of hard coal? (C) India (D) USA Operations produces large scale dust and noise. (A) Vehicle traffic (B) Machinery Blasting				(B)	Liquid Gold			
Which of the following country is largest producer of hard coal? (A) Australia (C) India (D) USA 93. — operations produces large scale dust and noise. (A) Vehicle traffic (B) Machinery Blasting			Pitch	, ,				
(A) Australia (C) India (D) USA 93. —— operations produces large scale dust and noise. (A) Vehicle traffic (B) Machinery Blasting								
(A) Australia (C) India (D) USA 93. —— operations produces large scale dust and noise. (A) Vehicle traffic (B) Machinery Blasting	92	Whic	ch of the following country is largest no	oduce	r of hard coal?			
(C) India (D) USA 93. ————————————————————————————————————	· .			ou ucc.	•			
93. —— operations produces large scale dust and noise. (A) Vehicle traffic (B) Machinery Blasting				(D)				
(A) Vehicle traffic (B) Machinery Blasting		(0)		(D)				
(A) Vehicle traffic (B) Machinery Blasting							•	
(B) Machinery Blasting	93.			ale du	ist and noise.			
Blasting								
		(B)			•			
(D) Excavation			•					
		(D)	Excavation					

94.	Cons	der the following statement regarding site investigation for dam.	
	I.	Beds traversed by fault zones and fault planes are more liable to shocks during earthquake.	
	II.	Small scale fault zones and shear zones can be treated effectively by Grouting.	
÷	W.	Both I and II are correct	
	(B)	I is correct and II is incorrect	
	(<u>C</u>)	I is incorrect and II is correct	
	(D)	Both I and II are incorrect	
95.	Whic	h of the following Testing machine is used to determine abrasion resistance of a stone?	
00.		Dorry (B) Deere	
	(C)	Miller (D) Modulus	
06	Enci	nearing properties of soils are studied by	
96.	Engi	neering properties of soils are studied by Soil mechanics	
	(D)	Rock mechanics	
	(B)		
	(C)	Hydro mechanics	
:	(D)	Stress mechanics	
97.		ch of the following statement is correct regarding geochemical process?	
	I.	Dispersion is influenced by either mechanical or chemical process.	
	II.	Dispersion is influenced by both mechanical as well as chemical processes.	
	III.	Dispersion can happen under the primary as well as secondary Petrogenic conditions	} .
	(A)	All are correct	
	(B)	I and III are correct II is incorrect	
	401	II and III are correct I is incorrect	
*	(D)	I is correct II and III are incorrect	
			-
98.	The	geochemical classification of the elements was done by	
	(A)	Clarke (B) Barth	
	501	Goldschmidt (D) Eskola	
+		19 GEPG/1	19

	(A)	James Hutton			
		William Morri's Davis			
	(C)	Sharpe			ę
	(D)	Reiche		that is a second	
100.	Isola	ted bill of bedrock standing o	r persists on th	· ne peneplains are	known as
•	(A)	Natural levee		Monadnock	
	(C)	Cuesta	(D)	Strath	
			x		
101.	Richt	er scale of earth quake is hav	ving		
201.	(A)	9 divisions		10 divisions	
	(C)	11 divisions	(D)		
	\ - /				
100	TVI		1		c
102.		maximum depth of origin of e	artnquake so i	ar recorded in th $700 - 800 \text{ kms}$	
	(A)	300 – 400 kms	(D)		
	(C)	500 - 600 kms	(D)	600 - 700 kms	
•					
103.	Whic	h is called "Valley of Ten tho	usand Smoke"'		
	(A)	Pacific	(B)		
		Katmai (Alaska)	(D)	Mid-Oceanic	
	*				
104.	Whic	ch of the following feature doe	es not belong to	positive relief fe	eatures?
	(A)	Lava cone	(B)	Hornitos	
	401	Lava-tunnel	(D)	Self volcano	
105.	The	eruption nature of the volcan	o depends up c	o n .	
	(A)	temperature			
	(B)	viscosity of the magna			•
	(C)	amount of dissolved gases			
		all the above	•		*
	•				•
GEP	G/19		20		

The concept of cycle of erosion was formulated by

106.		on a map of globe connecting former nent of continental lithosphere is	position	ons of the pole of rotation of an individual
	(A)	Pole of rotation		
	(7)	Polar wandering path		
	(C)	Paleo rotation curve		
	(D)	Pole of equator		
107.	The t	term "Isostasy" is not related with		
	(A)	Gravity	(B)	Equipoise
	(C)	Balance		Drifting
108.	The a	zone below the isopiestic level is called		
	(A)	Lithosphere	(0)	Asthenosphere
	(C)	Hydrosphere	(D)	Troposphere
109.	The t	temperature in the core of the earth is		
	(1)	6000°C	(B)	7000°C
	(C).	1400°C	(D)	9000°C
110.	Whic	ch part of the earth forms about 83% of	the ea	arth by volume?
	(A)	Crust	(2)	Mantle
	(C)	Core	(D)	Lithosphere
111.	Joly	calculated the age of the earth by salin	ity-clo	ck method as
	(A)	10 million years		
	(B)	50 million years		
. •		100 million years		
	(D)	1000 million years		

	(A)	building stones		
	(B)	road stones		
	400	both building and road stones		
	(D)	none of these		
	*			
113.	The C	Cuddapah system shows the alternate	sequer	ace of
	(A)	Sandstone and Shale		
	(B)	Shale and Limestone		
		Quartzite and Slate		
	(D)	Quartzite and Limestone		•
	. ,		*,	
11 A	/Dl			
114.		ource of mica is a rock.	. (72	. D
	• •	Granite		Pegmatite
	(C)	Syenite	(D)	Granodiorite
				.*.
115.	The r	cocks of the Dharwar super group fall	s withir	n the range of
	(A)	2900 - 2200 m.y	· (B)	2500 - 2000 m.y
		2900 – 2600 m.y	(D)	3200 - 2600 m.y
116.	The l	Dharwar system comprises the oldest	rocks e	xposed in the
	(A)	Andhra Pradesh State		
		Karnataka State		
	(C)	Maharashtra State		
	(D)	Madhyapradesh State		
117.	Tho	main fossils found in Uttatur formati	ona ono	
117.			ons are	
	(A)	Acanthoceras		* * * * * * * * * * * * * * * * * * *
	(B)	Turrilites		
	(C)	Belemnites		
		Mammites, Acanthoceras, Turrilite	es and E	Belemnites
GEI	PG/19		22	

The Quartzites of Cuddapah system has been extensively used as

118.	Thick	eness of the Kamlial formation in the type area is about		
	(A)	400 – 600 m		
	(3)	600 – 1000 m		
	(C)	800 – 1200 m		
	(D)	400 – 1800 m		
119.	The t	ype area for Lower Gondwana is which of the following seque	nce?	
	(1)	The sequence of Damodar valley	ŧ	
, .	(B)	The sequence of saline series of spiti		
	(C)	The sequence of Mio-Pliocene of Neyveli		
	(D)	The sequence of Kashmir valley		e e e e e e e e e e e e e e e e e e e
120.	Gond	wana sediments are of which nature of origin?		
	(A)	Fluvio-marine	,	
	(25)	Glacio-fluvial and luccustrine		
	(C)	Marine		
	(D)	Marine transgressive		
121.		Ganurgarh chocolate shale with stromatolitic limestone an ative of which type of depositional environment?	d sandstone	interbeds are
	(A)	Evaporitic environment		
	(B)	Nearshore muddy tidal flat environment		
	(0)	Shoreline - lagoon - tidal flat complex		
	(D)	Fluvial to deltaic environment		

Thickness of sediments in Bhander group is

400 m

1300-1500 m

3000-4000 m

100-300 m

122.

(A)

(C)

(D)

123.	Dino	flagellates range from		
•		Silurian to present	(B)	Permian to present
	(C)	Carboniferous to permian	(D)	Lower carboniferous to permian
				•
124.	Perop	oteris genus is ranges from		
		Permian to recent		
	(B)	Upper Carboniferous to Lower Triass	sic	
	(C)	Permian - Triassic		
	(D)	Lower carboniferous to Permian		
125.	Lepic	dodendron is the name of		
		Genus	(B)	Order
	(C)	Class	(D)	Phylum
			` /	
126.	Coni	ya ayuwahyiliyin haat may waah a lanat	امسما	h
120.	Gent	s euryphyllum beat may reach a lengt Length 17 cm breath 5 cm	n and	breath
	(B)	Length 10 cm breath 5 cm		
	(C)	Length 20 cm breath 10 cm		
	(D)	Length 30 cm breath 10 cm		
	(D)	Deligin 60 cm bream 10 cm		
	a			
127.		gamopteris is distinguished from Gloss	sopteri	
	(A)	Presence of mid-rib		Absence of mid-rib
	(C)	Presence of spines	(D)	Presence of venation
128.	Whic	ch were the predominant flora in the G	ondwa	ana time?
	(A)	Gymnosperms		
	(B)	Pteridophytes		
		Both Gymnosperms and Pteridophyt	tes	
	(D)	Angiosperms and Spermatophyte		
	•			
129.	The	study of the plant life of the geological	past i	s
	4	Palaeobotany	(B)	Palaeozoology
	(C)	Micropalaeontology	(D)	Palaeobiology
GEP	G/19		: , : :4	

		Metastome				
	(B)	Meraspis				
	(C)	Marginal spine				
	(D)	Marginal furrow				
					÷ 1.	
132.	In di	vision of the body into	transverse segments i	n anterior is		
	(A)	Axis			. ve	
	(B)	Pleural lobes			e e e	
	(0)	Cephalon				
	(D)	Thorax		•		
133.	Whic	h one of the following i	is correct?			
	<u>(1).</u>	Turrilites –	Middle cretaceous			
	(B)	Baculites –	Lower cretaceous			
	(C)	Scaphites –	Middle cretaceous			
	(D)	Neolobites -	Lower cretaceous			
,						
134.	Whic	ch among the following	upper Triassic Ammo	noids?		
	(A)		(B)	Ceratites		
	(0)	Tropites	(D)	Vermiceras		
←			25			GEPG/19 [Turn over
						[Turn over

Posterior most glabellar segment in front of thorax is called

Thoracic segment

Oceipital segment

Pygidial segment

Ocular platform

In trilobites, small plate behind mouth is called

130.

131.

(A)

(C)

(D)

Piedment scarps are also called as 135. scarplets fault scarps (B) (C) fault line scarps composite fault scarps (D) Example of world's most spectacular composite system of graben and step fault is 136. Afar Triangle, Ethiopia Southern side of Himalaya (B) Rift Valley of Africa (C) Seaward face of Western Ghats (D) Fault strikes perpendicularly (or) diagonally to the strike of the regional structure 137. Strike fault (A) Transverse fault Longitudinal fault (C) Diagonal fault (D)

- (A) Diagonal slip fault
- (B) Dextral fault
- (C) Hinge fault

Simistral fault

- 139. Extra force necessary to break the bonds along the fault is
 - (A) Coefficient of friction
 - (B) Crushing strength
 - Cohesive strength
 - (D) Postulated condition

	1.	Contem poraneons deformation		•	
	2.	Collapse structure			
	3.	Horizontal compression			
	4.	Differential compaction of sediment	s		
	(A)	3 and 4 only	*		
•	(6)	1, 3 and 4 only			
	(C)	1, 2 and 3 only			
	(D)	1 and 2 only			
					*
141.		ess of folding in which the compete ast each other under the influence of			due to their sliding
	(A)	Flow folds	(B)	Shear folds	
	40%	Flexural folding	(D)	Drag folding	
					•
142.		is change in form caused	hv stres	2	
144.	(A)	Stress difference	(B)	Static pressure	
	(A)	Distortion	(D)	Dilation	
		Distortion	(D)	Dilation	
143.	Poiss	son's ratio of ———— is a goo	d averag	ge of rocks.	
	(A)	0.15		0.25	
	(C)	0.35	(D)	0.45	
	* .				
144	The	displacement of particles along the li	ne of for	ce is the resultant of	
144.	. (2)	Normal strain	(B)	Axes of stress	
	(C)	Shear strain	(D)	Compression	
	(0)	Shear strain	(D)	·	
145.	The	monomineralic rock of olivine is term	ned as		
	(A)	Basalt	(B)	Anorthosite	
	40	Dunite	(D)	Granite	
146.	Fore	sterite crystallizes in which of the giv	en cryst	al systems	
140.	(A)	Monoclinic	JH 51 9 50	Orthorhombic	
		Tetragonal	(D)	Triclinic	
	(C)	1 CO agonai	(1)	LICITIO	
		the contract of the contract o			

Causes of folding by Non - tectonic processes $% \left\{ 1,2,...,2,...,2,...\right\}$

147.	The	soda-amphibole inter	mediate be	tween glau	cor	hane and Ric	ebeckite	is	7-	
*	VI)	Crossite		(B	3)	Crocidolite				
	(C)	Nephrite)),	Gedrite		i i		
148.	The i	fibrous, asbestiform v	variety of re	eibeckite w	hicl	h is indigo bl	ie in colo	our is		
	(A)	Eckermannite	,			Crocidolite	ac III coic	our is		
	(C)	Richterite	* * * * * * * * * * * * * * * * * * *	(D)))	Arfvedsonite				
				(1)	,					
149.	A hor	wagan aan ba'a mut		1.1.4		0.1			•	
143.	(A)	xagon can be a put as	a sign to e	xhibit which	ch c	of the following	ig symm	etry elem	ent?	
	(A)	3-fold symmetry				•				
	(C)	6-fold symmetry				. •	:	•		
	(C)	2-fold symmetry								
	(D)	4-fold symmetry								
				* .						
150.	Trem	nolite crystallizes in w	hich of the	following	crys	stal system?				•
	(A)	Orthorhombic		•						
	(B)	Triclinic		•						
	(0)	Monoclinic								
	(D)	Tetragonal								
151.	The r	nost common alterati	on product	of Augite f	forn	ned at a late	magmati	ic stage is	3	
		Hormblende				•				•
	(B)	Riebeckite						•		
	(C)	Glaucophane								
•	(D)	Anthophyllite		•						
152.	"Heri	ringbone structure" is	s verv mucl	n narticulai	r in	which of the	followin			10
	(A)	Hypersthesic	, very muci	i particula	. 111	which of the	10110W111	g pyroxer	ie mine	erai!
	(B)	Enstatite						-1		
		Angite								
	(D)	Wollastonite								
	(-)	· · · · · · · · · · · · · · · · · · ·								
GEP	G/19			28		•			•	- 4

	(A)	Aventurine			
	00)	Clay minerals	•		
	(C)	Perthite			
	(D)	Antiperthite			
154.	Late	st theory for the origin of earth is ca	alled as		
	(A)	Nebular Hypothesis			
	(B)	Proto-planet hypothesis			
	(C)	Magnetic theory			
		Big-Bang theory			
			. ,		
155.	Whic	ch of the following feldspars are prec	dominent	constituents of granites?	
		Alkali feldspars with K and Na			
•	(B)	Plagioclase feldspar as a whole			
	(C)	Calcic plagioclases	F - 4		
	(D)	Bytownite and Anorthite			
156.	Labr	adorite is the principal constituent	in which	of the following rocks.	
	(A)	Granites		Anorthosites	
	(C)	Basalts	(D)	Dunites	
157.	Whic	ch one pair is orthoclase diminish?			
		Granite to Diorite			
	(B)	Quartz diorite to Diorite			
	(C)	Granite and Granodiorite			
	(D)	Quartz diorite to granodiorite			
	(D)	dance mount to Rightmounte	•		
←			29		GEPG/19 [Turn over

The alternation product of k-feldspars are

	(C)	Origin not confirmed				
	(D)	Hypabyssal				
100	/DL - T	Danier's reserving souice w	mugaavita indiaat	.		
160.		Bowen's reaction series, r	nuscovite maicat	e .		
	(A)	Continuous series				
	(B)	Discontinuous series				
	(C)	Particular temperature				
		It do not react with ren	naining melt			
161.	Ident	tify the mineralogical con	trast of Alkali ki	ndreds.		.*
	(A)	Alkali feldspar				
	(B)	Sodalime feldspar				
	(C)	Augite, Hornblende, Rl	hombic Pyroxene			
,		Mica and garnet			•	
	(Internation Burney	. •			
162.	Ande	site is predominant of				
	(1)	Plagioclase feldspar		· .		
	(B)	Alkali feldspar				
	(C)	Nepheline bearing mir	nerals			
	(D)	Soda rich feldspar			*.	
16 3.	Orth	oclase break up at 1170	° to form			
100.	(A)	Clinoenstatite				
	(B)	Reaction pair				
	(C)	Olivine and liquid				
	(C)	Leucite plus liquid	•		•	
		Leucite pius fiquid				
GEF	PG/19		30			←
	J 20					•

The Nepheline bearing plutonic rock, which is the predominant feldspar.

Give the origin for granite which occuring as fills.

Labradorite

Albite

158.

(A)

(C)

(B)

Microcline

Orthoclase

Plutonic origin Volcanic origin

165.	The N	Mineral assemblage of sanidine facies is	
	(11)	Clinophyroxene + Laboradorite + Quartz	
	(B)	Smectite + Zeolite	
	(C)	Pyropegarnet + Omphacite	
	(D) -	Hornblende+ andesine + Quartz	
166.	The i	index mineral of medium grade metamorphism is	
100.	(A)	Lawsonite	
	(B)	Hypersthene	
	(D)	Staurolite	
	(D)	Muscovite	
	(D)	Wuscovite	
167.	Load	metamorphism is caused by	
	(1)	Vertically acting stress of superincumbent rocks	
	(B)	Crustal movements involved being of orogenic type	
	(C)	More or less complete recrystallisation	
	(D)	Combination of direct pressure and Heat.	
168.	Whic	ch clay rock consist of pure hydrated silicate of alumina.	
	(A)	Tillite Kaolin	
	(C)	Fireclay (D) Marl	
100	XX 71		
169.	whe	n the Limestone is made up entirely of fossils its termed as	
	(D)	Coquina	
	(B)	Biohermal	
	(C)	Pelagic	•
	(D)	Biostromal	
+		31	GEPG/19
-			[Turn over

Metamorphic changes taking place during a rise in pressure and temperature are called as

164.

(A)

(C)

(D)

Retrograde metamorphism
Prograde metamorphism

Isograde metamorphism

Metasomatism metamorphism

170.	The o	calcite dissociates under the atmospheric press	sure at ———	temperature.
	(A)	500°C		
	(B)	400°C		
	(2)	900°C		
	(D)	700°C		
				•
171.	Whic	ch is consider as Upper part of ore deposits.		
	(A)	Primary Zone		
		Zone of oxidation		
	(C)	Zone of supergene Enrichment		
	(D)	Zone of Secondary deposition		
	(~) _.	Bone of Scoolidary deposition		
172.	Potro	playm and natural gas have been formed by the		
114.		bleum and natural gas have been formed by the	e process of	
	(A)	Evaporation		
	(B)	Supersaturation		
	(C)	Sublimation	•	
		Distillation		
173.	Whic	ch is consider as oxide group of mineral?		e .
	(A)	Barite (B)	Gypsum	
	5	Limonite (D)	Pyrite	
174.	Pure	quartz is called		
	(A)	Colourless translucent mineral		
	0	Colourless transparent mineral		
	(C)	Colourless opaque mineral		
	(D)	Colourless regularly border mineral		

	(1)	Kant	and Laj	place				
	(B)	Cham	berlin a	and Mou	lton			
	(C)	Von V	Veizsacl	ker				
	(D)	Jeans	and Je	ffry				
176.	The	minovol	Laghagt	00 10:1100	d ovton	oivolv in	tho m	anufacture of
170.	(A)		and cem		u exten	sively iii	(B)	anufacture of Ordinary cements
		•		of ceme	nts		(D)	None of the above
		•	•					
1 E E	3.4	,	1.0					
177.	Mine (A)			per mak	ing is			Usah ayada alama
	(A) (C)	Ball	nays grade cl	ove			(D)	High grade clays Medium grade clays
	(0)	LIOW 8	sraue cr	ays			(D)	medium grade clays
178.	Mat	ch the f	ollowing	g :				
	(a)	Pure (Jypsum		1.	Fibrou	s vari	ety
	(b)	Alabas	ster		2.	Massiv	e vari	ety
	(c)	Rock g	gypsum		3.	Compa	ict and	l massive
	(d)	Satin	spar		4.	Crysta	lline v	ariety
-		(a)	(b)	(c)	(d),	•		
	(A)	2	1	3	4			
	(B)	1 .	2	3	4			
	(C)	2	3	1	4			
		4	2	3	1			
179.	Fine	the co	rract sa	quence o	fnaire			
170.	I.					Residua	l liqui	d injection
	II.		_				_	liquid – Injection
	III.			on series		11111111	scible	nquiu – injection
	IV.			replacen				
		I and		repraeen	iciiç		(D)	III and III
							(B)	III and IV
	(C)	III aı	na i				(D)	II and III
	,							

175. Nebular hypothesis was proposed by

180.	Mat	ch the follo	wing:		
	(a)	Direct		1.	These waves suffer reflection and bounced back on to
	(b)	Refracted		2.	These areal extend of remove forms to
	(c)	Reflected			These areal extend of various formation
			£il:	3.	These waves getting refracted
	(d)	Electrical	proming	4.	Without penetrating much below in to the ground
		(a) (l	o) (c)	(d)	
	(A)	3 4		1	
	(B)	2 1	4	3	
	(C)	1 2	3	4	
	(10)	4. 3	1	2	
181.	ша			1.4	
101.				a transm	nissivity are
	(A)	Flow in a			
	(B)	Adhesior	to grains		
	(C)	Unconne	cted pores		
		Permeab	ility		
		•			
182.	Gro	ind water f	loro from h	vighor	to lower energy
102.				iigiiei —	to lower energy.
	(A)	Pressure	-		
		Energy			
	(C)	Force			
	(D)	Tempera	ture		
		14			
183.	Shal	le and Clay	resistivity	in Karn:	ataka is
	(A)	0.3 Ωm	10010011119	III IXAIII	1 Ω m
	(C)	10 Ωm			(D) $80-170 \Omega m$
184.	Bori	ng of small	dia wells	upto 15 n	n in clay, silt and sand may be done with
	(A)	Driving			Auger
	(C)	Cavity			(D) Jetting
	` /				(-) 000ming

		Proportional to the hydraulic gradient						
	(C)	Is directly proportional to the length of flow						
	(D)	Inversely proportional to length of the path.						
	•							
186.	Perm	eability (K) has the dimension of velocity						
	(A)	$L \times T$ L/T						
	(C)	T/L (D) L^2/T						
187.	For a	n aquifer, having water table in it the term can be						
	(A)	Unconfined aquifer						
	(B)	Water table aquifer						
	(C)	Confined aquifer						
	(D)	Both unconfined and Water table aquifer						
188.	Permeability is measured							
	(A)	Perpendicular to the bedding planes						
	(6)	Parallel to the bedding planes						
	(C)	Vertically when beds are horizontal						
ž	(D)	Diagonal to the bedding planes						
189.	Spec	ific yield of a material is always						
	(A)	= to porosity (B) > porosity						
	C	$<$ porosity (D) \geq porosity						
190.	'Arti	ficial rainfall' is made by						
	(A)	Dry Ice and HCl						
	(B)	Silver iodide and H ₂ SO ₄						
	100	Silver iodide and Dry Ice						
	(D)	Calcium powder and Ammonia gas						
←		35						

185. Darcy's law states that 'velocity of flow in a porous media is

Inversely proportional to head loss

(A)

	(A)	O, He, H, N, C	(B)	He, H, O, N, C				
	(C)	O, H, He, C, N		H, He, C, N, O				
192.	Whi	ch of the following instruments used in	radioa	activity prospecting?				
	I.	Gamma ray spectrometers.	radioe	totivity prospecting.				
	II.	Scintillation counters.						
	III.	Gamma-Newton spectrometers.						
	IV.	Curie counters.	•					
	(4)	All	(D)	I and III				
•	(A) (C)	II and III	(B)	I and III I and II				
	(C)	II and III	(1 and 11				
193.	Whi	ch of the following is not a technique to	produ	ce seismic waves?				
	I.	Poulter method						
	II.	Dinoseis						
	III.	Vibroseis						
	IV.	Seismoseis						
	(A)	I and III	(B)	I				
	(C)	II and III		IV				
194.	Consider the following statements:							
	I.	Basic and ultrabasic igneous rocks sh	ow str	onger magnetism than acid rocks				
	II.	Metamorphic rocks show very variabl						
			-					
		Both I and II are true	(B)					
	(C)	I is true II is false	(D)	I is false II is true				
195.	Consider the following statements regarding Earth's gravitational field							
	I.	Earth's mass can be estimated from t	he 'G'	value of the earth surface				
	II.	Average value of 'G' at earth's surface	is 9.8	$0~\mathrm{ms^{-2}}$				
	(A)	Both I and II are true, II is not corre	ct valı	ue of G				
	TO S	Both I and II are true, II is correct v	alue of	fG				
	(C)	I is false, II is true						
	(D)	Both I and II are false						
~	. ~							
GEP	G/19	$^{\circ}$	6					

36

Find the correct sequence of abundances of elements in the solar atmosphere.

190.	Shar	ts which do not reach the surface of the mines are called	
	(A)	Inclines Shaft	
	(B)	Cross cut Shaft	
	(0)	Blind Shaft	
	(D)	Unlined Shaft	
197.	The	estimation of any resource hand	
197.	natu	estimation of ore reserves based on general and broad observations of a qualitativ	e
	(1)	Inferred Ore	
	(B)	Indicated Ore	
	(C)	Measured Ore	
	(D)	Computed Ore	
100			٠
198.		is the common techniques adopted in sampling.	
	(A)	Bulk (B) Coning	
•	C	Channel (D) Drilling	
			•
199.	Cons	sider the following statement regarding sampling.	
	I.	Depth and width of the channel should be uniform for all deposits.	
	II.	Depth and width of the channel should be uniform in case of a banded or bedded deposits.	£
	(A)	Both I and II are correct	
	(B)	I is correct II is incorrect	
	(0)	I is incorrect II is correct	
	(D)	Both I and II are incorrect	
200.	Whic	ch of the following is not a design for the tunnel?	
2 00.	(A)	Circular	
	(B)		•
	(B)	Rectangular U-shaped	
	(D)		
	(D)	D-shaped	

GEPG/19

GEPG/19 [Turn over

GEPG/19 40